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No one-to-one relation in most cases

• Pathways rather than individual genes  

• Drivers versus passengers 

• Role of context and stochastic variations 
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Lessons from 

engineered genetic perturbations 

in Fly
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Engineered chromosomal deletions
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Left arm of chromosome 2 

Chromosomal deletions (in one chromosome only)



Engineered chromosomal deletions
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Left arm of chromosome 2 

Chromosomal deletions (in one chromosome only)

Expression of deficiency genes  is reduced by  nearly half

(but not exactly and not always)



What is the impact on network neighbors? 

1st order neighbors 2nd order neighbors 
3rd order neighbors 

deficiency gene
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Expression changes propagate through the 

network up to the second order neighbors

First order neighbors 

Second order neighbors 

Third order neighbors 



Expression variation of deficiency genes is 

higher than other genes
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Measurement of variability 

Delta = abs(e1-e2) /ave(e1,e2)

e1,e2 – expression in experiment 1 and 2
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Expression bursts as major contributor to 

single cell  expression noise 
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Prediction from the model – increased copy copy  number reduces 



Single cell model does not explain 

variability in expression of deficiency genes  
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Technical noise

e
x
p

re
s
s
io

n
 v

a
ri
a

b
ili

ty
 



13

-4 -3 -2 -1 0 1

0
.0

0
.5

1
.0

1
.5

Female

log2 Fold Change (Df/+ vs. Control)

D
e

lt
a

-3 -2 -1 0 1

0
.0

0
.5

1
.0

1
.5

Male

log2 Fold Change (Df/+ vs. Control)

D
e

lt
a

Deficiency genes with 

compensated/collapsed  expression are 

more noisy 

compensated 

collapsed

½ of wild-type expression

(expected)

e
x
p

re
s
s
io

n
 v

a
ri
a

b
ili

ty
 



14

-4 -3 -2 -1 0 1

0
.0

0
.5

1
.0

1
.5

Female

log2 Fold Change (Df/+ vs. Control)

D
e

lt
a

-3 -2 -1 0 1

0
.0

0
.5

1
.0

1
.5

Male

log2 Fold Change (Df/+ vs. Control)

D
e

lt
a

Deficiency genes with 

compensated/collapsed  expression are 

more noisy 

compensated 

collapsed

½ of wild-type expression

(expected)

e
x
p

re
s
s
io

n
 v

a
ri
a

b
ili

ty
 



15

-4 -3 -2 -1 0 1

0
.0

0
.5

1
.0

1
.5

Female

log2 Fold Change (Df/+ vs. Control)

D
e

lt
a

-3 -2 -1 0 1

0
.0

0
.5

1
.0

1
.5

Male

log2 Fold Change (Df/+ vs. Control)

D
e

lt
a

Deficiency genes with 

compensated/collapsed  expression are 

more noisy 

compensated 

collapsed

½ of wild-type expression

(expected)

e
x
p

re
s
s
io

n
 v

a
ri
a

b
ili

ty
 Hypothesis:

dosage compensation 

and expression noise 

are related to 

interaction context



Expression variations propagate across 

regulatory network
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TF
Non-TF



Why this is relevant 
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Copy number variations and 

propagation of expression 

changes  in cancer 
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Positive correlation between gene copy 

number and gene expression in cancer (GBM) 
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Molecular Phenotypes Genotypes  
(gene expression)
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CNV

Using propagation of expression perturbation to 

study genotype-phenotype relation



The eQTL-net method

expression of

gene of interest 

eQTL relation  

Motivated in part by:

Tu et al Bioinformatics 2006

Suthram et al MSB 2008

Kim et al. PLoS CB 2011



Explaining eQTL associations by propagation 

of expression changes 

eQTL relation  

gene of interest 

genes in CNV region

Kim et al. PLoS CB 2011



Explaining eQTL associations by propagation 

of expression changes 

Kim et al. PLoS CB 2011

gene of interest 



Identification of information propagation 

pathways and driver genes 

driving gene

Kim et al. PolS CB 2011

gene of interest 



How to interpret these pathway in the context 

of throughput interaction networks?   



Dutch Interior 1, Joan Miro’ (1893–1983) Museum of Modern Art, New York
© 2012 Successió Miró / Artists Rights Society (ARS), New York / ADAGP, Paris used with ARS permission).

How to interpret this painting? 



REAL NETWORK 

Dutch Interior 1, Joan Miro’ (1893–1983)

Museum of Modern Art, New York
© 2012 Successió Miró / Artists Rights Society (ARS), New York / ADAGP, Paris

(used with ARS permission).

The Lute Player, Hendrick Maertensz Sorgh (1610-1670),  

Rijksmuseum, Amsterdam
(public domain)

Details are perturbed but  relationships remain



eQTL relation  

gene of interest 

Considering information propagation 

pathway as a bag of genes  



Typically we use many genes as a molecular 

phenotype- repate the process for all of them 

eQTL relation  

eQTL relation  



Results
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Driving Copy Number alterations 

EGFR, PTEN, RB1, GBAS, TP53, CDKN2A,…..

Reoccurring pathways 

Cell cycle, EGFR, RAS, Cell proliferation, Insulin Signaling, DNA repair, ….

Splicing, SMAD (nuclear translocation), lipid storage

Hubs

Myc, E2F1,   CREBBP, SP1, Jun,…



Utilizing Networks for Understanding 

Genotype-Phenotype relations

Network 

propagation



What can we do about perturbations that do not 

necessarily cause expression change in network 

neighbors?



mutated / 

dysregualted

subnetworks

d networks 

Finding mutated/dysregulated

subnetworks 

If different perturbations have similar effects the 

perturbations should be related – belong to the 

same subnetwork

Main principle: 

Challenge: 

Cancer heterogeneity 



Gene cover

Module Cover Approach 

Find minimal cost set of 

modules so that each 

disease case is covered at 

least k times 

Optimization problem: 

Cost  is a determined by:

A similarity of genes within modules

(application dependent) 

number of modules 

Kim et al. 2013

a

Advantage: different patients can be covered by different subnetworks

Motivated in part by: Ulitsky et al 2008



Gene cover

Optimization problem: 

Cost  is a function of:

Similarity within modules

• Distance in network

• Expression similarity  

(similarity of eQTL profiles)

number of modules 

(parameterized penalty)

Kim et al. 2013

Application 1: Glioblastoma Analysis 

Advantage: different patients can be covered by different subnetowrks



Modules capture patients 
heterogeneity/subtypes  

cases

m
o

d
u

le
s

Kim et al. PSB 2013



Application 2: Extension to mutual 

exlusivity



Mutual exclusivity of cancer drivers 

mutations in gene 1

Mutations in gene 2

patients 

Thomas et al 2007

Ciriello, et al., 2012; 

Vandin, et al., 2012;

Szczuret et.al , 2014, 2015

Leiserson, et al., Vadin et al. 2013,2014,2015;

Kim et al.  2015

Constantinescu et al. 2015

Proposed explanations 

• any of the two drivers alone gives sufficient growth advantage

• negative genetic interactions between drivers  

Interesting property

Mutual exclusive pairs are often in the same pathway   



Application 2: Subnetworks dysregulated

across many cancer types 
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Gene cover

Cost  is a function of:

Similarity measure

• Distance in network

• Mutual Exclusivity Score 

number of (parameterized 

penalty)

Kim et al. 2015



Defining Mutual exclusivity in PanCancer

setting 

mutations in gene 1

Mutations in gene 2

patients 

patients 

gene 1

gene 2

Kim et al. IMSB 2015 – classification of ME types in context of PanCancer and properties of 

different ME types 
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MEMCover (Mutual Exlusivity Module Cover)

Finds subnetwokrs dysregulated across cancer types 
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Kim et al. IMSB 2015



Kim et al. IMSB 2015



MEMCover modules are enriched in cancer 

drivers? 

44

Compared to Module Cover without ME                      Compared to HotNet2



mutated / 

dysregualted

subnetworks

d networks 

Utilizing Networks for Understanding 

Genotype-Phenotype relations

Perturbation 

flow



mutated / 

dysregualted

subnetworks

d networks 

Patient/phenotypic similarity networks

phenotypic 

similarity 

networks 

Perturbation 

flow



Motivation – simultaneous utilization of 

multiple genotypic/causal  and phenotypic 

data types 
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Genotypic/ causal factors

mutations,

CNV

methylation, 

Sex, age, environment ….

Phenotypic properties 

gene expression

response to drugs

survival time

pathology features 

Idea: Construct phenotype similarity graph and 

explain it connectivity using genotypic features 
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Topic model: Assuming that each document is a 

mixture of topics - identify topics and the words that 

define them

Chang J, Blei DM: Hierarchical Relational Models for Document Networks. Ann Appl

Stat 2010, 4(1):124-150.

Document similarity network 



Subtype I

EGFR_A  0.45

NF1_M    0.37

PTEN_A  0.21

….

Subtype II

PDGFA_A  0.51

IDH1_M    0.29

M53_M      0.17

….

Subtype III

mirR218_H  0.38

ICDK2_D     0.22

SHC1_M      0.14

….

Subtype IV

CDK2B_D 0.37

EGFR_A  0.25

….

Features:
EGFR_A

NF1_M

CDKN2B_D

.

.

;

Topics – disease subtypes 

Words – possible causes (mutations, CNV, miRNA)

Documents similarity– phenotypic similarity (gene expression)  

Cho et al. NAR 2013/RECOMB 2012



Cho et al. NAR 2013/RECOMB 2012

Similar patients are to be explained by similar 

subtypes mixtures 



Co-occurrence of patients in the same 

subtype (based on 1000 topic models)

Observation: No separate Neural group



Loss of Neural group is not surprising 
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expression similarity network for GMB

Mesenchymal

Classical  

Proneural

Neural 

Varhaak et al. 

Classification 



Mesenchymal

EGFR_A  

NF1_M    

NF1_A

PTEN_A  

BRACA2

BRACA1

….

Preneural

PDGFA_A  

IDH1_M    

Mir 128a/b     

Mir 124a….

ErBB1/2

Subtype III
Classical 

TNFRSF

….

(no clearly 

dominating one)

Features:
EGFR_A

NF1_M

CDKN2B_D

.

.

;

Subtypes are defined by a  distribution of words 

(mutations) – new patients can be easily 

classified 

Cho et al. NAR 2013/RECOMB 2012



mutated / 

dysregualted

subnetworks

d networks 

Summary – these are complementing 

approaches 

phenotypic 

similarity 

networks 

Perturbation 

flow

eQTL-net

Module-Cover Topic Model 
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Perturbing a systems brings about valuable lessons


